
1482 Federal Register / Vol. 67, No. 8 / Friday, January 11, 2002 / Notices

proposal also involves the acquisition of
a nonbanking company, the review also
includes whether the acquisition of the
nonbanking company complies with the
standards in section 4 of the BHC Act
(12 U.S.C. 1843). Unless otherwise
noted, nonbanking activities will be
conducted throughout the United States.
Additional information on all bank
holding companies may be obtained
from the National Information Center
website at www.ffiec.gov/nic/.

Unless otherwise noted, comments
regarding each of these applications
must be received at the Reserve Bank
indicated or the offices of the Board of
Governors not later than February 4,
2002.

A. Federal Reserve Bank of Kansas
City (Susan Zubradt, Assistant Vice
President) 925 Grand Avenue, Kansas
City, Missouri 64198–0001:

1. Lauritzen Corporation, Omaha,
Nebraska; to acquire 1.54 percent, for a
total of 23.03 percent, of the voting
shares of First National of Nebraska,
Inc., Omaha, Nebraska, and thereby
indirectly acquire additional interest in
First National Bank of Omaha, Omaha,
Nebraska; First National Bank, North
Platte, Nebraska; Platte Valley State
Bank & Trust Co., Kearney, Nebraska;
Fremont National Bank & Trust Co.,
Fremont, Nebraska; First National Bank
& Trust Company, Columbus, Nebraska;
First National Bank, Overland Park,
Kansas; First National Bank South
Dakota, Yankton, South Dakota; First
National of Colorado, Inc., Fort Collins,
Colorado, First National Bank, Fort
Collins, Colorado; Union Colony Bank,
Greeley, Colorado; First National Bank
of Colorado, Boulder, Colorado; First
National of Illinois, Inc., Omaha,
Nebraska, and Castle Bank, N.A.,
DeKalb, Illinois.

Board of Governors of the Federal Reserve
System, January 7, 2002.
Robert deV. Frierson,
Deputy Secretary of the Board.
[FR Doc. 02–686 Filed 1–10–02; 8:45 am]
BILLING CODE 6210–02–S

DEPARTMENT OF HEALTH AND
HUMAN SERVICES

Food and Drug Administration

[Docket No. 97D–0282]

Medical Devices: General Principles of
Software Validation; Final Guidance for
Industry and FDA Staff; Availability

AGENCY: Food and Drug Administration,
HHS.
ACTION: Notice.

SUMMARY: The Food and Drug
Administration (FDA) is announcing the
availability of the guidance entitled
‘‘General Principles of Software
Validation.’’ This document provides
guidance to medical device
manufacturers and FDA staff concerning
requirements for validating software
used within medical devices, in device
production, or in implementing the
manufacturer’s quality system.
DATES: Submit written or electronic
comments at any time.
ADDRESSES: Submit written requests for
single copies on a 3.5′′ diskette of the
guidance document entitled ‘‘General
Principles of Software Validation’’ to
the Division of Small Manufacturers,
International and Consumer Assistance
(HFZ–220), Center for Devices and
Radiological Health (CDRH), Food and
Drug Administration, 1350 Piccard Dr.,
Rockville, MD 20850. Send two self-
addressed adhesive labels to assist that
office in processing your request, or fax
your request to 301–443–8818. See the
SUPPLEMENTARY INFORMATION section for
information on electronic access to the
guidance.

Submit written comments concerning
this guidance to the Dockets
Management Branch (HFA–305), Food
and Drug Administration, 5630 Fishers
Lane, rm. 1061, Rockville, MD 20852.
Submit electronic comments to http://
www.fda.gov/dockets/ecomments.
Comments are to be identified with the
docket number found in brackets in the
heading of this document.
FOR FURTHER INFORMATION CONTACT: John
F. Murray, Center for Devices and
Radiological Health (HFZ–340), Food
and Drug Administration, 9200
Corporate Blvd., Rockville, MD 20850,
301–594–4659.
SUPPLEMENTARY INFORMATION:

I. Background
This final guidance document entitled

‘‘General Principles of Software
Validation’’ provides guidance to
medical device manufacturers and FDA
staff concerning requirements for
validating software used within medical
devices, in device production, or in
implementing the manufacturer’s
quality system. It replaces the draft
guidance that FDA issued for comment
on June 9, 1997, and published in the
Federal Register of July 25, 1997 (62 FR
40099).

We received responses from 36
organizations and individuals, with
more than 650 questions, comments,
and specific recommendations for
changes to the guidance. However,
further work on the guidance was
interrupted by other high priority

activities, including implementation of
the Food and Drug Administration
Modernization Act of 1997, FDA’s
response to year 2000 software
concerns, and two rounds of
implementation of our first medical
device performance standard. Because
of the delay in issuing this final
guidance, we have chosen to summarize
our response to the comments received.
As with any guidance, we will continue
to accept comments and may update
this document in the future.

The following summarizes the
comments we received, and significant
changes we made to the guidance in
response to those comments:

A. Intended Scope
From a few of the comments received,

it appears that some parties may not
have realized the full breadth of the
quality system regulation. The software
validation requirement in 21 CFR
820.70(i) of the quality system
regulation also applies to automated
tools used to design medical devices
and tools used to develop software.
Since the first medical device good
manufacturing practice regulation was
published in 1978, there has always
been an explicit validation requirement
for software used in device production
or used to implement the quality
system. When design controls were
introduced into the quality system
regulation in 1997, that software
validation requirement was extended to
software used to design devices, such as
computer-aided design and software
development tools. FDA clearly
addressed this issue at the end of its
response to comment 136 in the
preamble to the quality system
regulation (61 FR 52602 at 52630,
October 7, 1996). A copy of the text is
included at the end of this section.

Some comments objected to the
discussion of validation activities
during the predesign ‘‘concept’’ phase of
software development, both because the
quality system regulation does not apply
to research activities, and because there
is too little information available at that
point to make any validation related
activity worthwhile. In response to
these concerns, we have removed all
reference to validation activities during
the ‘‘concept’’ phase.

Other comments noted that the
guidance covered more than just
validation issues, and suggested
changing the title to broaden the scope
of the guidance. We acknowledge that
the scope of the guidance is somewhat
broader than the scope of validation in
the strictest definition of that term.
However, we have chosen not to change
the title of the guidance. Planning,

VerDate 11<MAY>2000 18:14 Jan 10, 2002 Jkt 197001 PO 00000 Frm 00050 Fmt 4703 Sfmt 4703 E:\FR\FM\11JAN1.SGM pfrm07 PsN: 11JAN1



1483Federal Register / Vol. 67, No. 8 / Friday, January 11, 2002 / Notices

verification, testing, traceability,
configuration management, and many
other activities discussed in the
guidance are important activities that
together help to support a final
conclusion that software is validated.

Some comments expressed concerns
that the guidance might be applied too
rigorously by FDA investigators, and
some pharmaceutical manufacturers
raised questions about how the
guidance would be applied to their drug
manufacturing operations. The agency’s
good guidance practices (GGPs) clearly
state the role of FDA guidance.
Alternative approaches that accomplish
full compliance with the quality system
regulation are acceptable. While it is
clearly intended for medical device
manufacturers, the guidance may also
be useful to the pharmaceutical industry
and other industries regulated by FDA.

Many comments suggested that we
move all discussions regarding use of
off-the-shelf (OTS) software to the
agency’s guidance entitled ‘‘Off-the-
Shelf Software Use in Medical Devices.’’
In response to these comments, specific
cross references to that document have
been added within the text of this
guidance. However, the OTS guidance
document deals specifically with
premarket submissions for OTS software
contained in medical devices. It is not
the appropriate guidance for OTS
software used in manufacturing and
quality systems applications.

B. Flexibility
Numerous comments cited overly

restrictive language and lack of
sufficient implementation flexibility in
the draft guidance. For example, many
comments noted that the guidance
implies use of a ‘‘waterfall’’ as the
preferred life cycle development
methodology. Several comments
suggested that more discussion was
needed regarding ‘‘rapid application
development’’ and ‘‘component-based
methodologies,’’ as well as ‘‘build a
little/test a little’’ as an acceptable
methodology. Other comments asked for
specific examples of available life cycle
models that could be used. In response
to these comments, and in accordance
with our own GGPs, we have carefully
rewritten the text to remove any direct
or implied use of the words ‘‘shall’’ or
‘‘must,’’ except where we describe or
reference a regulation. We also have
added language to specifically state that
incremental development
methodologies may be used, and that
activities and tasks can be performed in
a different order, if called for by the
chosen life cycle model. However, for
ease of description, we have retained an
organization of activities based on

‘‘requirements,’’ ‘‘design,’’ ‘‘coding (or
construction),’’ and ‘‘testing.’’
Regardless of the order in which tasks
are accomplished, these four categories
of activities are common to most life
cycle models. We have not included
examples of the dozens of life cycle
models that are available. To do so
could imply agency endorsement of
certain life cycle models that are
included over those models that are not
included. Instead, you are referred to
many of the textbooks and other
references listed at the end of the
guidance, which provide details of
many of these life cycle models.

One group of comments objected to
any use of the word ‘‘all’’ when
describing items to be included in
specification documents, noting that
‘‘all’’ is not a quantifiable term. Other
comments suggested use of the word
‘‘may’’ rather than ‘‘should.’’ On the
other hand, a few comments asked for
a specific compliance matrix, so that
manufacturers would know exactly how
to comply with FDA expectations. We
have not adopted these suggested
changes. We believe that agency
guidance should identify and encourage
use of approaches known to have been
used effectively, while the manufacturer
retains the prerogative to choose
alternative approaches that are equally
effective. Based on variables such as
firm size and structure, device risk,
project size, and complexity,
manufacturers have the flexibility to
choose different approaches for different
projects, and to select effective
approaches that best fit their specific
needs.

C. Format

Several comments suggested use of
the framework and format in
international guidelines such as ISO
9000–3, GAMP, IEEE Software
Standards and ISO/IEC 12207. We have
drawn information from each of these
sources and many other listed
references, but unfortunately, there is no
single format available. We have
rewritten the guidance to address
specific suggestions for wording
changes and simpler language. Some
comments asked for extensive use of
charts, analogies, and examples for the
concepts presented in the document.
While valuable, such an approach could
easily triple the size of the guidance.
Instead, we suggest referring to any of
the extensive list of references included
at the end of the guidance for more
details on specific implementation
approaches.

D. Differences Between Hardware and
Software

Regarding the discussion of
differences between hardware and
software, the comments were somewhat
divided. Some comments applauded the
agency for recognizing the legitimate
differences between hardware
engineering and software engineering.
Other comments argued that ‘‘software
is not different’’ and suggested deletion
of all or most of this section, either
because it was unnecessary, or because
it could be misinterpreted by software
developers who lack sufficient
engineering discipline. One comment
suggested emphasizing the similarities
of the engineering discipline needed to
build both hardware and software. We
have chosen to keep this section
because we believe it explains part of
the rationale for why software must be
thoroughly validated, and why the
software development process needs to
be carefully controlled and managed.
We have also added additional
information regarding the impact of
mobility of software professionals on
the long-term maintenance of software
and the need for thorough
documentation.

Some comments objected to the
discussion of standardization and reuse
of software components and asked for
more recognition of the trend toward
increased use of OTS and component-
based development methods. Other
comments objected to the statement that
‘‘repairs made to correct software
defects establish a new design.’’ We
have revised the text to address both of
these concerns.

E. Principles of Software Validation

We reorganized and rewrote the
section regarding ‘‘Principles of
Software Validation’’ to address the
comments received. For example, we
moved the subsection dealing with
documenting software ‘‘Requirements’’
to the front of the section to reflect the
importance of requirements in the
validation process. We clarified
language regarding ‘‘predetermined’’
requirements to allow for incremental or
evolutionary development of
requirements during the development
project. However, we have retained the
concept that documented requirements
should be established prior to formal
testing or other verification activities to
provide ‘‘objective’’ evidence that those
requirements were met.

The subsection previously entitled
‘‘Testing’’ is retitled ‘‘Defect
Prevention’’ and is revised to emphasize
the importance of preventing software

VerDate 11<MAY>2000 18:14 Jan 10, 2002 Jkt 197001 PO 00000 Frm 00051 Fmt 4703 Sfmt 4703 E:\FR\FM\11JAN1.SGM pfrm07 PsN: 11JAN1



1484 Federal Register / Vol. 67, No. 8 / Friday, January 11, 2002 / Notices

defects, as opposed to trying to ‘‘test
quality into’’ software.

We have renamed the subsection on
‘‘Timing.’’ In response to several
comments concerning validation
continuing ‘‘for the entire life cycle,’’ we
have rewritten the text, but have
retained the concept. At each stage of
the software life cycle, there is
information available that can
contribute to a conclusion that the
software meets user needs and intended
uses. Therefore, the validation process
does not end when the device is
shipped.

We replaced the subsection on
‘‘Management’’ with a new subsection
dealing with the ‘‘Software Life Cycle.’’

We have clarified the subsections
dealing with ‘‘Plans’’ and ‘‘Procedures’’
to distinguish between plans that define
what to do, and procedures that
describe how to do it.

The subsection entitled ‘‘Partial
Validation’’ is substantially rewritten
and retitled ‘‘Software Validation After
a Change.’’ Many readers misinterpreted
the statement that ‘‘software cannot be
partially validated’’ and thought we
intended all validation testing to be
repeated every time any change is made.
That is not what we meant. Based on the
comments received, we have rewritten
the discussion to emphasize the need
for regression analysis after a change,
followed by an appropriate level of
regression testing to reestablish the
validation status of the software. We
have deleted specific discussion of
retrospective validation and reverse
engineering of nonvalidated software,
but these issues should be covered
during the regression analysis.

We have retitled and rewritten the
subsection on ‘‘Amount of Effort.’’ Now
titled ‘‘Validation Coverage,’’ it still
describes an approach that ties the level
of validation and verification effort to
the safety risk and complexity of the
software.

We revised the subsection on
‘‘Independence of Review’’ to provide
greater flexibility and a better
explanation of its intent.

The subsection previously entitled
‘‘Real World’’ is now entitled
‘‘Flexibility and Responsibility,’’ and
reemphasizes that device
manufacturers/software developers have
a lot of flexibility in how they
implement their software validation
process, but the device manufacturer is
ultimately responsible for the adequacy
and effectiveness of the selected
approach.

F. Terminology
Some of the most significant

comments we received had to do with

our basic definition of software
validation. In the previous draft
guidance, we relied upon technical
definitions used by the National
Institute of Standards and Technology
and by the Institute of Electrical and
Electronic Engineers. These technical
definitions created some confusion with
other definitions in our quality system
regulation. Numerous comments
objected to our use of ‘‘validation’’ as an
umbrella term to cover ‘‘design review’’
and ‘‘verification’’ as well as validation.
They stated that both design review and
verification are distinctly separable
quality concepts and are not a part of
validation. In response to these
concerns, we have changed the
definition of software validation to be
more consistent with the quality system
regulation and other international
quality standards. Our revised
definition of software validation is
derived directly from the definitions of
‘‘validation’’ and ‘‘design validation’’ in
the quality system regulation.

Comments also objected to the title
‘‘Typical Validation Tasks’’ at the end of
each subsection in the section V of the
guidance and suggested that they are
really verification tasks. Other
comments objected to possible
interpretation of these as mandatory
tasks. In response to these comments,
we have also added text to explain that
there are typical verification and testing
tasks that support an overall conclusion
that software is validated. Thereafter,
when we discuss ‘‘Typical Tasks
Supporting Validation,’’ we do not try to
differentiate between verification tasks
versus validation tasks. Instead, we have
revised the text to list ‘‘Typical Tasks.’’
While we want to avoid any inference
that the tasks are mandatory in every
case, the guidance makes the point that
these are ‘‘typical’’ approaches that are
recommended by software engineering
standards and textbooks, and widely
used by many software engineering
professionals.

Several comments noted
inconsistencies in terminology from that
contained in the quality system
regulation, in two software guidances
issued by the Office of Device
Evaluation, and in the FDA glossary of
computerized system and software
development terminology. These
comments also suggested use of the term
‘‘risk analysis’’ instead of ‘‘hazard
analysis’’ throughout the software
validation guidance. We have revised
the guidance to incorporate the term
‘‘risk analysis’’ throughout. However,
we continue to emphasize that while
there are many different risks (e.g.,
economic or time to market), FDA is
concerned about safety risk (hazard). At

their next revision, we expect to update
other software guidance documents and
the FDA glossary with consistent
definitions of validation, verification,
and risk analysis. In addition, we now
use the term ‘‘user site testing’’ rather
than ‘‘installation testing’’ to describe
testing performed at the user site and
outside the control of the software
manufacturer.

Some comments questioned whether
OTS software could be validated
because the device manufacturer
frequently does not have access to the
source code. These comments suggested
that OTS software should be ‘‘qualified’’
rather than ‘‘validated.’’ However, we
believe that the evidence developed by
a device manufacturer concerning OTS
software is a true validation because it
directly supports a conclusion that the
software meets user needs and intended
uses. Where the source code is not
available, it is incumbent upon the
device manufacturer to use other means
(such as audits, or more extensive black
box testing) to infer the structural
integrity of the OTS software. This issue
is clearly addressed in comment 136 of
the preamble to the quality system
regulation (61 FR 52602 at 52630).

Other comments from the
pharmaceutical industry suggested
incorporation of widely understood
process validation terminology (i.e.,
installation qualification (IQ),
operational qualification (OQ), and
performance qualification (PQ)) to
describe software validation. Another
comment suggested use of ‘‘product
performance qualification’’ rather than
‘‘design validation.’’ We have added a
section that refers to the various types
of qualification, but we have chosen not
to adopt ‘‘qualification’’ terminology in
explaining software validation
requirements. Of course, manufacturers
may continue to organize their
validation efforts using IQ/OQ/PQ
terminology, if they wish.

In response to comments, a new
subsection has been added to explain
the differences between ‘‘requirements,’’
which may be general in nature, versus
‘‘specifications,’’ which are developed
to an engineering level of detail.

Several comments objected to use of
undefined terms such as ‘‘microcode’’
and ‘‘assertions.’’ We reiterate that these
and many other terms used throughout
the guidance are specifically defined in
the FDA glossary of computerized
system and software development
terminology, which is available at http:/
/www.fda.gov/ora/inspect_ref/igs/
gloss.html.

VerDate 11<MAY>2000 18:14 Jan 10, 2002 Jkt 197001 PO 00000 Frm 00052 Fmt 4703 Sfmt 4703 E:\FR\FM\11JAN1.SGM pfrm07 PsN: 11JAN1



1485Federal Register / Vol. 67, No. 8 / Friday, January 11, 2002 / Notices

G. Design Review

As noted above, design reviews are
not a part of validation. In fact, several
comments noted that results of
verification and validation are inputs to
design reviews—not the other way
around. To emphasize this point, we
moved the subsection on ‘‘Design
Reviews’’ outside the section on
‘‘Typical Tasks Supporting Validation.’’
We also added information about the
difference between formal design
reviews that are mandated by the
quality system regulation versus less
formal technical reviews.

H. Traceability

A few comments objected to the
guidance regarding ‘‘traceability
analysis,’’ especially the discussion at
the end of the subsection on ‘‘Coding.’’
Two comments noted that for very
complex programs with thousands of
lines of code or thousands of modules,
the traceability analysis would be
extremely complex and of little value.
One suggested that design review was
an adequate substitute for traceability
analysis. We disagree. Traceability is an
essential aspect of verification, and it is
an important input into design reviews.
We therefore do not believe that design
review could be an adequate substitute
for traceability analysis.

One comment stated that
requirements are not always neatly
structured, and it is very difficult to
trace exactly how they are implemented
in the design. There are numerous
many-to-one and one-to-many
relationships to be mapped from
requirements to design to code. We
agree with this observation; however, it
actually further supports the need for
traceability. The larger and more
complex the project, the more important
the traceability analysis becomes.
Therefore, we have retained the
discussions regarding traceability, and
in response to several other comments,
we have added traceability of software
requirements to the safety risk analysis.

Another comment noted that inherent
traceability can be built into
documentation and code without having
to have a separate traceability
document. We agree and for that reason
have avoided use of the most commonly
used term—‘‘traceability matrix.’’ Three
common approaches are traceability
matrix, using computer databases to
evaluate traceability, or building
inherent traceability into the structure
of the documentation and code. There
may be many other approaches to
traceability. Software developers have
flexibility in how they want to
implement traceability.

I. Risk Analysis
Many comments questioned the

concept of a software failure modes and
effects analysis (FMEA). They stated
that given the difficulty of predicting
specific software failure modes, FMEA
is better used as a system level risk
analysis tool. We have revised the
guidance to discuss software risk
analysis within the context of system
safety. However, while we acknowledge
some limitations in its use, we also
believe that software FMEA can be a
useful tool, especially for safety critical
aspects of software applications. It may
also be useful early in the development
process for analyzing safety critical
software requirements.

One comment objected to the
suggestion that risk analysis begin at the
stage where requirements are defined.
However, to be useful and have an
impact on the software development
process, we believe that risk analysis
needs to begin early and needs to be
updated as the project progresses. In
addition, we have revised various
portions of the guidance to emphasize
that the level of safety risk is a major
factor in determining the level of effort
to be applied in testing and other
verification and validation tasks.

J. Planning
In response to comments, we have

changed the subsection on
‘‘Management’’ to be entitled ‘‘Quality
Planning.’’ It now provides a more
general discussion of the software
validation and verification concerns to
consider during quality planning.

Several comments questioned the idea
of early test planning, which was
recommended in the draft guidance. For
example, they argued that there is
insufficient information available
during requirements development to be
able to develop a system test plan or an
acceptance test plan. We disagree and
have retained the recommendations for
early test planning, but we have
specified that test plans and test cases
should be created as early in the
software development process ‘‘as
feasible.’’ One of the important criteria,
both for requirements and for design, is
that they be testable. The fact that there
is insufficient information for a
particular test plan is valuable feedback
to the development process that perhaps
the requirements or design processes are
not yet sufficiently complete. Planning
is a dynamic activity that should be
reexamined and updated as the project
progresses.

K. Requirements
Many comments objected to use of the

word ‘‘all’’ in describing what is

typically specified in software
requirements. We agree that
requirements frequently do not specify
‘‘all’’ that they should. However, that is
widely recognized as one the major
flaws in software development, and its
correction is one of the most important
messages intended by this guidance. In
order to be complete, a software
requirements specification should cover
all the pertinent issues—not just a
selected few.

One comment noted that
requirements may not always be
measurable. We have changed the text
to state that requirements should be
‘‘measurable or objectively verifiable.’’

A few comments noted that ‘‘internal
interfaces’’ and ‘‘all ranges of values the
software will accept’’ are a part of
design—not requirements. We agree
regarding internal interfaces and have
changed the text accordingly. However,
since software requirements are derived
from system requirements, there may be
some internal system interfaces
prescribed from the high level system
design that would impact software
requirements. Regarding ‘‘ranges of
values,’’ we note that there is rarely a
bright line of demarcation between
requirements and design. Software
developers have flexibility as to where
in their life cycle they wish to cover
particular issues. We rejected most
comments requesting even greater levels
of detail and specificity regarding static
verification techniques. For example,
several comments asked for more detail
regarding ‘‘requirements evaluation’’
and ‘‘interface analysis.’’ Details on
these techniques are available in many
of the references listed at the end of the
guidance. FDA investigators will expect
to see a verification procedure that
includes a means for identifying and
resolving incomplete, ambiguous, and
conflicting requirements, as required by
the regulation. They will also expect to
see objective documented evidence that
the verification procedure was
implemented.

L. Design

We have retained wording about the
need for design specifications to be
complete enough for programmers not
to have to make ad hoc decisions. The
intent is to ensure that the code created
is consistent with the design
specification. When programmers or
engineers decide to add new
functionality not identified previously
in the requirements or design, those
specifications need to be updated to
reflect the actual code created. The
project manager, design team, and any
future maintainers of the software need

VerDate 11<MAY>2000 18:14 Jan 10, 2002 Jkt 197001 PO 00000 Frm 00053 Fmt 4703 Sfmt 4703 E:\FR\FM\11JAN1.SGM pfrm07 PsN: 11JAN1



1486 Federal Register / Vol. 67, No. 8 / Friday, January 11, 2002 / Notices

to have accurate documentation in order
to do their work.

We have dropped the listing of
specific approaches to software design,
and we have included a more general
description of what should be included
in a software design specification. Some
comments considered the previous list
to be too prescriptive as well as
incomplete.

We recognize that portions of the
software are completed and released
incrementally, and life cycle processes
are repeated iteratively. The intent is
that those portions of the software have
design documentation that is consistent
with the software application that is
implemented. One comment noted that
in a rapid application development
(RAD) environment, there is typically
no formal design document in place
during coding. We recognize that RAD
is valuable as a prototyping tool, but its
use does not preclude the need to
document the specific design, once it is
agreed upon.

M. Coding
We have changed the title of this

subsection to reflect that the creation of
a software application can be either
through coding, or through combining
existing software components, such as
OTS software products or functional
components from existing code
libraries.

Comments objected to the idea of
having to keep results of all
compilations of the code. In response,
we have revised the discussion of
compiler error checking to state that the
results of the ‘‘final’’ compilation of the
code should be retained to document
any errors that remain uncorrected in
the final software product.

N. Testing by the Software Developer
We renamed and revised this

subsection to provide a better
explanation of the purpose of testing,
and to avoid prescriptive language
concerning use of specific testing
techniques. We have added language
regarding use of incremental
development and testing methodologies.
We expanded the discussion of testing
coverage to explain how different
degrees of coverage should be
considered for varying levels of risk,
and that the manufacturer has flexibility
to choose the right level of coverage.

One comment noted that the intent of
testing is to find errors, and suggested
a better explanation of this and other
tenets of a software testing strategy. We
have added such an explanation.

Other comments argued that
statistical testing based on usage profiles
is more effective than extensive

structural testing in finding software
defects. We agree that statistical testing
is one of many valuable testing
methodologies, and we have added
information about its use. However, it is
important to note that statistical testing
is an adjunctive approach, rather than
an outright replacement for other types
of testing.

O. User Site Testing
Based on several comments, we have

renamed the subsection formerly
entitled ‘‘Installation Testing’’ and
moved it into the section on life cycle
activities. User site testing can be any
one of several types of testing performed
by the user or by others at the user site.
System level testing performed by the
software developer under conditions
that simulate the user’s environment is
an important part of validation for some
products, and it may substitute for some
aspects of user site testing. However, for
certain products such as blood
establishment software, there are
specific FDA requirements for
additional testing to be performed at the
user site. For manufacturing and quality
system software, user site testing is
frequently performed by the device
manufacturer.

P. Maintenance and Software Changes
Several comments objected to the

statement that ‘‘all modifications are
design changes,’’ noting that some
changes, such as a correction of coding
errors, do not change the intended
design. We have made appropriate
changes to the text. However, we
continue to emphasize that the
validation of all software changes needs
to include a regression analysis and, as
appropriate, regression testing to show
that the change has not negatively
impacted the software.

In response to other comments, we
have added information regarding
anomaly evaluation, problem
identification and resolution tracking,
and the need to update documentation.

Q. Process and Quality System Software
We have added a new section to the

document dealing with validation of
automated process equipment and
quality system software. This change
was in response to the many comments
that raised issues and asked for more
detailed information about validating
such software, especially OTS
automated equipment and OTS
software.

Many comments discussed the
difficulties encountered in trying to
validate OTS software, and suggested a
different approach for validation of
manufacturing and quality system

software. Source code and life cycle
documentation are frequently
unavailable for review, so structural
testing is usually not possible. Auditing
the vendor’s software development
activities is one possibility, but some
software vendors will not agree to being
audited. One comment suggested that
risk analysis, design, coding, and unit
testing should not apply to quality
system software, especially if it is
purchased, and further suggested that
functional testing is the most that can be
expected. Several comments suggested
that for widely used applications, there
can be a reasonable assumption that the
vendor validated the software at the
time it was developed, and that
installation qualification by the user
should be sufficient. Many of these
issues are addressed in the response to
comment 136 in the preamble of the
quality system regulation (61 FR 52602
at 52630).

It is not the agency’s intent to
discourage use of OTS computer
products. The activities described in the
guidance can be shared between the
vendor and device manufacturer (the
user). However, we believe that the
principles and activities described in
the guidance are important for an
overall conclusion that software is
validated for its intended use. Device
manufacturers are required to have
purchasing controls for the products
and services they receive. Such controls
are an important part of decision
making regarding OTS software. Our
experience is that ‘‘assumptions’’
regarding validation by the vendor are
not always well founded. Each OTS
software product needs to be
individually evaluated based on the
intended use of the software, available
life cycle documentation, available
verification and validation evidence,
and most importantly the device safety
risk posed by the automated process.
Device manufacturers can use multiple
sources of information, but are
ultimately responsible for documenting
the basis for their conclusion that the
software is validated for its intended
use.

Several comments suggested
alternative approaches for certain types
of software, such as operating systems
and certain tools used in software
development, such as compilers and
robust ‘‘middleware’’ such as Oracle,
Documentum, or Lotus Notes. We have
added suggestions for alternative
approaches, while still retaining the
basic requirement that the software
must be validated for its intended use.

A few comments questioned who is
responsible for validation of OTS
software. One questioned FDA’s

VerDate 11<MAY>2000 18:14 Jan 10, 2002 Jkt 197001 PO 00000 Frm 00054 Fmt 4703 Sfmt 4703 E:\FR\FM\11JAN1.SGM pfrm07 PsN: 11JAN1



1487Federal Register / Vol. 67, No. 8 / Friday, January 11, 2002 / Notices

authority to regulate software vendors,
but argued that device manufacturers
cannot be responsible because they lack
access to source code and life cycle
documentation. Another noted that
vendors frequently change their
hardware and software, resulting in
unreasonable FDA expectations for
revalidation of each change. One
comment asked for more details
regarding the impact of the supplier’s
quality system on purchasing decisions.
In response to these comments, we
reaffirm that FDA holds the device
manufacturer responsible for the
software validation requirement. This
responsibility can be further delegated
in part through contracting and
purchasing controls, and monitored
through supplier audits or other means,
but the device manufacturer is
ultimately responsible for its decision to
choose a particular software product.
The fact that a vendor refuses to provide
access to its development process or
documentation does not relieve the
device manufacturer of this
responsibility. Likewise, we note that
the device manufacturer is not obligated
to install every software upgrade offered
by a vendor. Validation of those
upgrades and support from the vendor,
including access to the necessary
vendor documentation, need to play an
important role in the upgrade decision.

Some comments argued that software
validation should be treated more like
process validation, which is only
required if the output of the process
cannot be fully verified by subsequent
inspection and testing. Other comments
asked for clarification of the term
‘‘verification by output’’ and asked
whether it negated the requirement for
software validation. One comment
argued that output of software driven
systems can never be fully verified.
Another comment suggested the
consideration of intended use and
dependence upon software for proper
operation of the process to determine
whether verification could be
substituted for software validation.

In response to these comments, we
believe there are very few examples
where ‘‘verification’’ in lieu of software
validation could be justified, and even
in those cases, most manufacturers
would choose to validate the software
rather than go through repeated
verifications of output. For example,
while every aspect of a drawing from a
computer-aided design (CAD) system
can be independently verified, no user
of a CAD system is likely to go to that
trouble or expense for every aspect of
every drawing. Likewise, because
software itself cannot be fully verified,
automated software development tools

used to create medical device software
must be validated for their intended use.

Requirements are needed to establish
intended use, the degree of dependence
on the software, and therefore the
degree of validation needed. The device
manufacturer decides whether or not to
use OTS software. The ability to
validate for intended use and vendor
support for the effort should be a part
of that decision. Static analysis and
structural testing are techniques to be
used in evaluating source code and life
cycle documentation, when these items
are available. Otherwise, the device
manufacturer is dependent upon
functional testing alone. This issue is
discussed in response to comment 136
in the preamble to the quality system
regulation (61 FR 52602 at 52630). The
impact on the safety and quality of the
medical device is an important
determining factor in the approach and
level of effort to be applied for
validating automated manufacturing
and quality system software, just as it is
for software in a medical device.

R. References

There were numerous
recommendations for additional
references. Those and many other
reference books, international standards,
and FDA guidance documents have
been added to the appendix at the end
of the validation guidance.

For ease of cross reference, the text of
comment 136 from the preamble of the
quality system regulation is included
below:

136. One comment on § 820.70(h),
‘‘Automated processes,’’’ (now § 820.70(i)),
stated that the section should be revised to
reflect that software used in such systems
must be validated for ‘‘its intended use,’’ not
simply validated. Another comment stated
that most companies buy software currently
available on the market and do not make
changes to the software. It was recommended
that § 820.70(h) allow for use of outside
personnel for validation runs and not
necessarily require the development of a
software validation procedure. One comment
suggested that the section should allow
verification rather than validation of off-the-
shelf software. Several comments on
‘‘automated processes’’’ stated that the term
‘‘data processing systems’’ was unclear and
its inclusion rendered the requirement too
broad. Others asked for clarification of
‘‘automated data processing systems.’’

FDA has modified the requirement to
mandate validation for the intended use of
the software. In addition, the requirement
that the software be validated by individuals
designated by the manufacturer has also been
deleted to make clear that validation may be
performed by those other than the
manufacturer. However, whether the
manufacturer designates its own personnel or
relies on outside assistance to validate

software, there must be an established
procedure to ensure validation is carried out
properly.

FDA has maintained the requirement for
validation because the agency believes that it
is necessary that software be validated to the
extent possible to adequately ensure
performance. Where source code and design
specifications cannot be obtained, ‘‘black box
testing’’ must be performed to confirm that
the software meets the user’s needs and its
intended uses.

FDA emphasizes that manufacturers are
responsible for the adequacy of the software
used in their devices, and activities used to
produce devices. When manufacturers
purchase ‘‘off-the-shelf’’ software, they must
ensure that it will perform as intended in its
chosen application.

FDA has amended the requirement to state
‘‘When computers or automated data
processing systems are used as part of
production or the quality system,’’ for
clarification. Software used in production or
the quality system, whether it be in the
designing, manufacturing, distributing, or
tracing, must be validated.

II. Significance of Guidance
This guidance document represents

the agency’s current thinking on
software validation. It does not create or
confer any rights for or on any person
and does not operate to bind FDA or the
public. An alternative approach may be
used if such approach satisfies the
applicable statutes and regulations.

The agency has adopted GGPs, and
published the final rule, which set forth
the agency’s regulations for the
development, issuance, and use of
guidance documents (21 CFR 10.115).
This guidance document is issued as a
level 1 guidance in accordance with the
GGP regulations.

III. Electronic Access
In order to receive ‘‘General

Principles of Software Validation’’ via
your fax machine, call the CDRH Facts-
On-Demand system at 800–899–0381 or
301–827–0111 from a touch-tone
telephone. Press 1 to enter the system.
At the second voice prompt press 1 to
order a document. Enter the document
number (938) followed by the pound
sign (#). Follow the remaining voice
prompts to complete your request.

Persons interested in obtaining a copy
of the guidance may also do so using the
Internet. CDRH maintains an entry on
the Internet for easy access to
information including text, graphics,
and files that may be downloaded to a
personal computer with Internet access.
Updated on a regular basis, the CDRH
home page includes the civil money
penalty guidance documents package,
device safety alerts, Federal Register
reprints, information on premarket
submissions (including lists of approved
applications and manufacturers’

VerDate 11<MAY>2000 18:14 Jan 10, 2002 Jkt 197001 PO 00000 Frm 00055 Fmt 4703 Sfmt 4703 E:\FR\FM\11JAN1.SGM pfrm07 PsN: 11JAN1



1488 Federal Register / Vol. 67, No. 8 / Friday, January 11, 2002 / Notices

addresses), small manufacturers’
assistance, information on video
conferencing and electronic
submissions, Mammography Matters,
and other device-oriented information.
The CDRH home page may be accessed
at http://www.fda.gov/cdrh. Guidance
documents are also available on the
Dockets Management Branch Internet
site at http:/www.fda.gov/ohrms/
dockets/default.htm.

IV. Comments
Interested persons may submit to the

Dockets Management Branch (address
above) written or electronic comments
regarding this guidance at any time.
Submit two copies of any
comments,except that individuals may
submit one copy. Comments are to be
identified with the docket number
found in brackets in the heading of this
document. The guidance document and
received comments may be seen in the
Dockets Management Branch between 9
a.m. and 4 p.m., Monday through
Friday.

Dated: December 11, 2001.
Linda S. Kahan,
Deputy Director, Center for Devices and
Radiological Health.
[FR Doc. 02–690 Filed 1–10–02; 8:45 am]
BILLING CODE 4160–01–S

DEPARTMENT OF HEALTH AND
HUMAN SERVICES

National Institutes of Health

Government-Owned Inventions;
Availability for Licensing

AGENCY: National Institutes of Health,
Public Health Service, DHHS.
ACTION: Notice.

SUMMARY: The inventions listed below
are owned by agencies of the U.S.
Government and are available for
licensing in the U.S. in accordance with
35 U.S.C. 207 to achieve expeditious
commercialization of results of
federally-funded research and
development. Foreign patent
applications are filed on selected
inventions to extend market coverage
for companies and may also be available
for licensing.
ADDRESSES: Licensing information and
copies of the U.S. patent applications
listed below may be obtained by writing
to the indicated licensing contact at the
Office of Technology Transfer, National
Institutes of Health, 6011 Executive
Boulevard, Suite 325, Rockville,
Maryland 20852–3804; telephone: 301/
496–7057; fax: 301/402–0220. A signed
Confidential Disclosure Agreement will

be required to receive copies of the
patent applications.

Expression, Purification and Efficacy
Testing of Synthetic Plasmodium
Falciparum Apical Membrane Antigen
1 Expressed in Pichia Pastoris
Stowers et al. (NIAID)
DHHS Reference No. E–025–02/0 filed

09 Nov 2001
Licensing Contact: Carol Salata; 301/

496–7735 ext. 232; e-mail:
salatac@od.nih.gov.
A challenge facing the biotechnology

industry involves finding robust
systems for the expression of large
amounts of recombinant protein. Extra
technological hurdles are faced when
these proteins are required for
therapeutic usages.

Malaria remains one of the leading
causes of both morbidity and mortality
in the tropical and sub-tropical world.
Currently, there is no malaria vaccine.
This invention relates to both of these
issues.

Two recombinant forms of the malaria
asexual blood stage antigen Apical
Membrane Antigen 1 (AMA1) were
produced in Pichia pastoris using totally
defined, synthetic medias and a
fermentation methodology that has been
reproducibly scaled over a 10-fold range
to 60L. High levels of secreted
recombinant protein were obtained
(300mg/L secreted protein in the
supernatant, and >50mg/L final purified
bulk protein), and a purification strategy
developed to remove Host cell-derived
lipids. Highly purified forms of both
types of AMA1 produced appear to
produce antibodies in vivo in rabbits
that block homologous parasites from
invading red blood cells in vitro. The
combination of the two allelic forms
made appears potent at inducing
antibodies capable of blocking the
invasion of many heterologous parasite
strains in vitro, suggesting that the
combination of these two alleles of
AMA1 will provide sufficient coverage
from the diverse field populations of
parasites. One of the two AMA1’s, based
on the FVO allelic variant of AMA1,
was emulsified with complete and
incomplete Freund’s adjuvant.

Vaccination of highly susceptible
Aotus vociferans monkeys with this
formulation conferred significant
protection from a subsequent lethal
challenge with the virulent FVO
Plasmodium falciparum parasite. Five of
eight animals whose primary immune
response was directed against AMA1
were completely protected. These two
recombinant form of AMA1 may be an
effective malaria vaccine. The
production and purification
methodologies may be suitable to other

therapeutic proteins where large-scale,
inexpensive production methodologies
are required.

Two cDNA Clones of Hepatitis E Virus
(HEV) That Are Infectious for Primates
and Encode a Virulent and an
Attenuated Virus Respectively

Suzanne U. Emerson, Robert H. Purcell,
Mingdong Zhang, and Xiang-Jin Meng
(NIAID)

DHHS Reference No. E–278–01/0 filed
09 Nov 2001

Licensing Contact: Carol Salata; 301/
496–7735 ext. 232; e-mail:
salatac@od.nih.gov
Hepatitis E virus (HEV) is a human

pathogen that is the most important
cause of acute hepatitis in areas where
the virus in endemic (Southeast and
Central Asia, and parts of Africa). This
invention relates to transcripts from the
two cDNA clones that produced virus
following intrahepatic transfection of
chimpanzees. The virus encoded by
cDNA with the consensus sequence of
the wild-type Sar 55 Pakistani strain of
HEV caused liver enzyme elevations
(i.e. acute hepatitis) in the chimpanzee
and resulted in seroconversion to anti-
HEV at five weeks following
inoculation. The second cDNA differed
from the first by a two nucleotides, one
of which was located in the coding
region. The nucleotide at this position
and the 18–20 nucleotides surrounding
it are highly conserved in all strains
sequenced thus far. Two chimpanzees
inoculated with transcripts from this
clone seroconverted to anti-HEV but
seroconversion was delayed until week
14 and liver enzyme levels did not rise,
indicating the virus was attenuated.
Viral sequences could be recovered from
the serum of only one chimp and at only
one time point by reverse-transcription
polymerase chain reaction, indicating
viral replication was inefficient. An
attenuated vaccine would be more cost
effective than a recombinant protein
vaccine.

Suppression of CCR5 but Not CXCR4-
Tropic HIV–1 Replication in Lymphoid
Tissue by Human Herpes Virus 6

Margolis et al. (NICHD)
DHHS Reference No. E–089–01/0 filed

28 Mar 2001
Licensing Contact: Carol Salata; 301/

496–7735 ext. 232; e-mail:
salatac@od.nih.gov.
HIV–1 infects cells via a receptor

complex formed by CD4 and a
coreceptor, such as CCR5 or CXCR4.
The early stages of HIV–1 infection are
dominated by CCR5-tropic viral
variants. CXCR4-tropic variants
frequently emerge at later stages

VerDate 11<MAY>2000 18:14 Jan 10, 2002 Jkt 197001 PO 00000 Frm 00056 Fmt 4703 Sfmt 4703 E:\FR\FM\11JAN1.SGM pfrm07 PsN: 11JAN1


